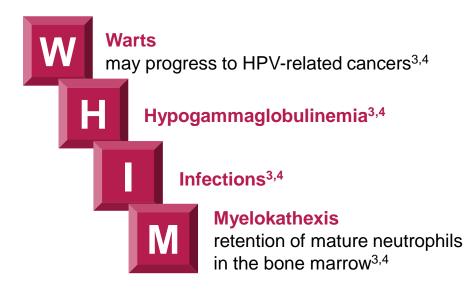
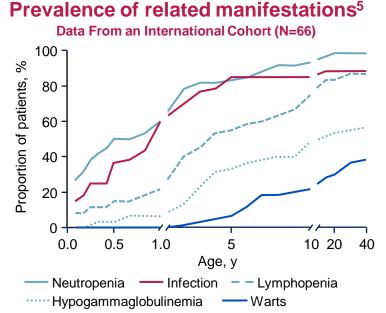
Results of a Phase 3 Trial of an Oral CXCR4 Antagonist, Mavorixafor, for Treatment of Patients With WHIM Syndrome

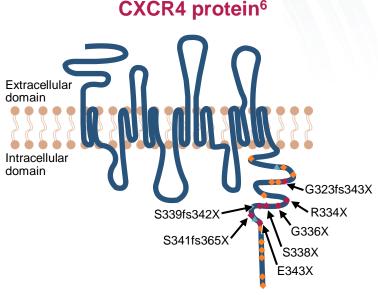


## 4WHIM Study Group

| Author                          | Affiliation                                                                                                                                                                                                                                                                                         |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Laia Alsina, MD, PhD            | Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric<br>Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu,<br>Barcelona, Spain; Universitat de Barcelona, Spain; Institut de Recerca<br>Sant Joan de Déu, Barcelona, Spain                                        |
| Antoine Azar, MD                | Division of Allergy and Clinical Immunology, Johns Hopkins University, Baltimore, MD, USA                                                                                                                                                                                                           |
| Yves Bertrand, MD, PhD          | IHOPe, Hospices Civils de Lyon and Claude Bernard University, Lyon, France                                                                                                                                                                                                                          |
| Audrey A. Bolyard, RN, BS       | University of Washington Medical Center, Seattle, WA, USA                                                                                                                                                                                                                                           |
| David Dale, MD                  | University of Washington Medical Center, Seattle, WA, USA                                                                                                                                                                                                                                           |
| Angela Deya, MD, PhD            | Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric<br>Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu,<br>Barcelona, Spain; Universitat de Barcelona, Spain Institut de Recerca Sant<br>Joan de Déu, Barcelona, Spain                                         |
| Kathryn E. Dickerson, MD        | The University of Texas Southwestern Medical Center, Dallas TX, USA                                                                                                                                                                                                                                 |
| Navid Ezra, MD                  | California Dermatology Institute, Thousand Oaks, CA, USA                                                                                                                                                                                                                                            |
| Henrik Hasle, MD, PhD           | Department of Paediatrics, Aarhus University Hospital, Aarhus, Denmark                                                                                                                                                                                                                              |
| Hyoung Jin Kang, MD, MS, PhD    | Department of Pediatrics, Seoul National University College of Medicine,<br>Seoul National University Cancer Research Institute, Seoul National<br>University Children's Hospital, Seoul, South Korea                                                                                               |
| Sorena Kiani-Alikhan, MD, MBPhD | Department of Immunology, Royal Free London NHS Foundation Trust,<br>London, United Kingdom                                                                                                                                                                                                         |
| Taco W. Kuijpers, MD, PhD       | Emma Children's Hospital, Amsterdam University Medical Centers (Amsterdam UMC), Department of Pediatric Immunology, Rheumatology & Infectious Disease, Amsterdam, Netherlands                                                                                                                       |
| Alexander Kulagin, MD           | RM Gorbacheva Research Institute, Pavlov University, St. Petersburg, Russia                                                                                                                                                                                                                         |
| Daman Langguth, BHB, MBChB      | Immunology Department, Sullivan Nicolaides Pathology Auchenflower, Wesley Medical Center, Queensland, Australia                                                                                                                                                                                     |
| Carina Levin, MD, PhD           | Pediatric Hematology Unit, Emek Medical Center, Afula, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel                                                                                                                            |
| Olaf Neth, MD, PhD              | Paediatric Infectious Disease, Rheumatology and Immunology Unit,<br>Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla,<br>IBiS/Universidad de Sevilla/CSIC, Red de Investigación Translacional en<br>Infectología Pediátrica RITIP, Av Manuel Siurot S/N, Seville, Spain |


| Author                        | Affiliation                                                                                                     |  |  |  |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------|--|--|--|
| Jane Peake, MBBS              | Queensland Children's Hospital, South                                                                           |  |  |  |
| tario i sano, mbbo            | Brisbane, Queensland, Australia                                                                                 |  |  |  |
| Yulia Rodina, MD, PhD         | Dmitry Rogachev National Research Center of Pediatric                                                           |  |  |  |
|                               | Hematology, Oncology and Immunology, Moscow, Russia                                                             |  |  |  |
| Caroline E. Rutten, MD, PhD   | Amsterdam University Medical Centers (Amsterdam UMC),<br>Department of Hematology, Amsterdam, Netherlands       |  |  |  |
|                               | Dmitry Rogachev National Research Center of Pediatric                                                           |  |  |  |
| Anna Shcherbina, MD           | Hematology, Oncology and Immunology                                                                             |  |  |  |
|                               | Moscow, Russia                                                                                                  |  |  |  |
| Teresa K. Tarrant, MD         | Division of Rheumatology and Immunology, Department of                                                          |  |  |  |
|                               | Medicine, Duke University, Durham, NC, USA                                                                      |  |  |  |
| Matthia C Massas MD DLD       | Department of Internal Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of |  |  |  |
| Matthias G. Vossen, MD, PhD   | Vienna, Vienna, Austria                                                                                         |  |  |  |
| Christian A. Wysocki, MD, PhD | UT Southwestern Medical Center, Dallas, TX, USA                                                                 |  |  |  |
| Andrea Belschner, CCRP        | X4 Pharmaceuticals, Boston, MA, USA                                                                             |  |  |  |
| Gary J. Bridger, PhD          | X4 Pharmaceuticals, Boston, MA, USA                                                                             |  |  |  |
| Kelly Chen, PhD               | X4 Pharmaceuticals, Boston, MA, USA                                                                             |  |  |  |
| Susan Dubuc, RN, MSN          | X4 Pharmaceuticals, Boston, MA, USA                                                                             |  |  |  |
| Yanping Hu, PhD               | X4 Pharmaceuticals, Boston, MA, USA                                                                             |  |  |  |
| Honghua Jiang, PhD            | X4 Pharmaceuticals, Boston, MA, USA                                                                             |  |  |  |
| Sunny Li                      | X4 Pharmaceuticals, Boston, MA, USA                                                                             |  |  |  |
| Rick MacLeod                  | X4 Pharmaceuticals, Boston, MA, USA                                                                             |  |  |  |
| Murray Stewart, MD            | X4 Pharmaceuticals, Boston, MA, USA                                                                             |  |  |  |
| Weihua Tang, PhD              | X4 Pharmaceuticals, Boston, MA, USA                                                                             |  |  |  |
| Arthur G. Taveras, PhD        | X4 Pharmaceuticals, Boston, MA, USA                                                                             |  |  |  |
| Tina Yan                      | X4 Pharmaceuticals, Boston, MA, USA                                                                             |  |  |  |
|                               |                                                                                                                 |  |  |  |



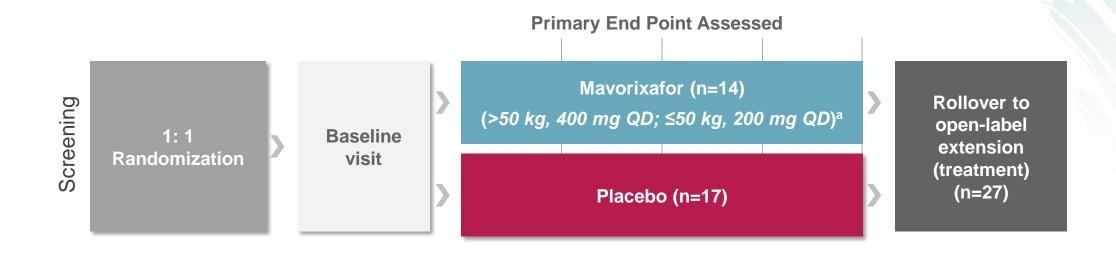


### **WHIM Syndrome At-a-Glance**

#### **WHIM Syndrome**

A rare immunodeficiency disease that can present with chronic neutropenia, lymphopenia, monocytopenia, and/or recurrent infections, including warts, resulting from impaired leukocyte trafficking predominately caused by gain-of-function variants in CXCR4<sup>1,2</sup>








From Geier CB, et al. J Clin Immunol. 2022;42(8):1748-1765.

The exact prevalence of WHIM syndrome is unknown



# 4WHIM Phase 3 Trial Design (NCT03995108)



#### **Primary end point**

 Mean TAT<sub>ANC</sub> – mean of the 13, 26, 39, and 52-week assessments<sup>b</sup>

#### First key secondary end point<sup>c</sup>

 Mean TAT<sub>ALC</sub> – mean of the 13, 26, 39, and 52-week assessments<sup>d</sup>

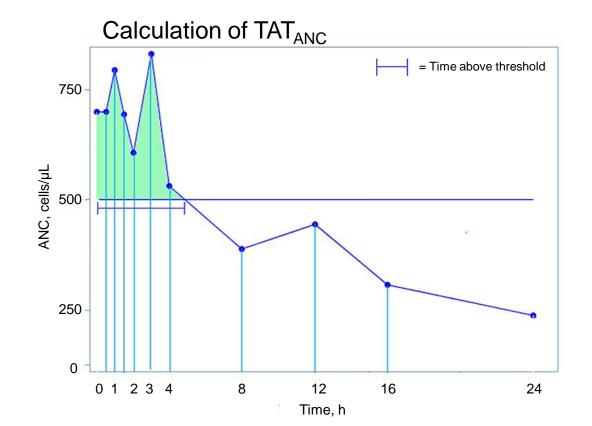
#### Other secondary end pointse

- Infection-related end points
- Wart-related end points
- Safety and tolerability across
   52 weeks

ALC, absolute lymphocyte count; ANC, absolute neutrophil count; QD, once daily; TAT, time above threshold.

<sup>a</sup>Adults and adolescents (aged 12-17 years) weighing >50 kg received 400 mg mavorixafor QD; adolescents aged 12-17 years weighing ≤50 kg received 200 mg QD. <sup>b</sup>TAT<sub>ANC</sub> is defined as time (in hours) above threshold ANC ≥500 cells/µL over a 24-hour period, assessed every 3 months for 52 weeks. <sup>c</sup>Secondary end points were analyzed per a hierarchical approach prespecified in the trial protocol; not all key secondary end points included in the hierarchical sequence are shown. <sup>d</sup>TAT<sub>ALC</sub> is defined as time (in hours) above threshold ALC ≥1000 cells/µL over a 24-hour period, assessed every 3 months for 52 weeks. <sup>e</sup>Not all other secondary end points are shown.

#### Time Above Threshold as an End Point $TAT_{ANC}$ and $TAT_{ALC}$

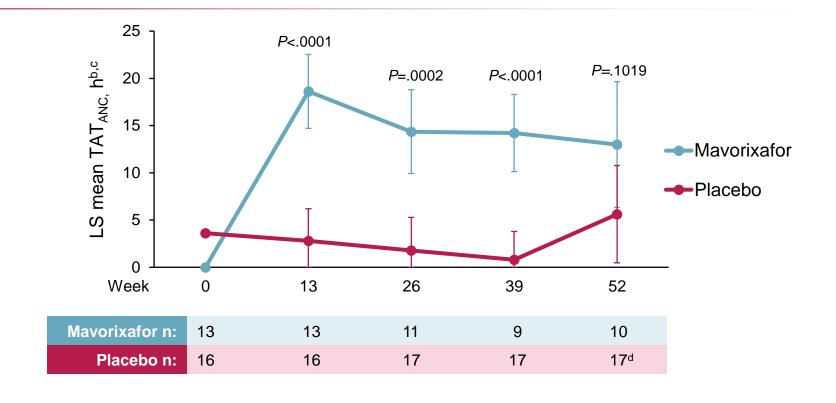

- Clinically relevant end points<sup>7</sup>
- Used to predict the risk of serious bacterial infections in patients with neutropenia and lymphopenia, resulting from disorders of bone marrow production<sup>7</sup>

#### TATANC

Time (in hours) above threshold ANC of ≥500 cells/µL over a 24-hour period, assessed every 3 months for 52 weeks

#### TAT<sub>ALC</sub>

Time (in hours) above threshold ALC of ≥1000 cells/µL over a 24-hour period, assessed every 3 months for 52 weeks



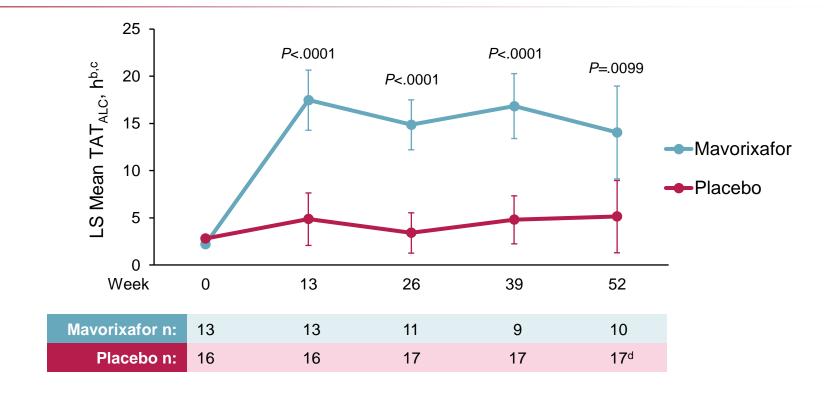



## **Key Demographics and Baseline Characteristics**

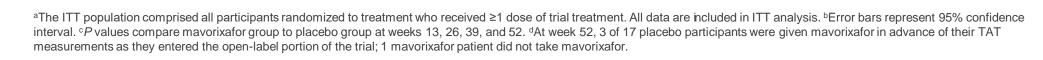
|                                      | Mavorixafor<br>(n=14) | Placebo<br>(n=17) |
|--------------------------------------|-----------------------|-------------------|
| Adolescents 12 to <18 y, n (%)       | 7 (50)                | 8 (47)            |
| Adults ≥18 y, n (%)                  | 7 (50)                | 9 (53)            |
| Sex, female, n (%)                   | 9 (64)                | 9 (53)            |
| Previous immunoglobulin usage, n (%) | 6 (43)                | 8 (47)            |
| Screening ANC (cells/µL)             |                       |                   |
| Mean (SD)                            | 173 (112)             | 194 (123)         |
| Median (min, max)                    | 150 (40, 390)         | 200 (0, 400)      |
| Screening ALC (cells/µL)             |                       |                   |
| Mean (SD)                            | 496 (237)             | 1015 (1983)       |
| Median (min, max)                    | 420 (260, 1070)       | 520 (100, 8560)   |

## Trial Met Its Primary End Point Mean TAT<sub>ANC</sub> Over 52 Weeks in Intent-to-Treat Population<sup>a</sup>




Overall, mean TAT<sub>ANC</sub> was 15.04 hours for mavorixafor vs 2.75 hours for placebo (*P*<.0001)

ITT, intent to treat; LS, least squares.

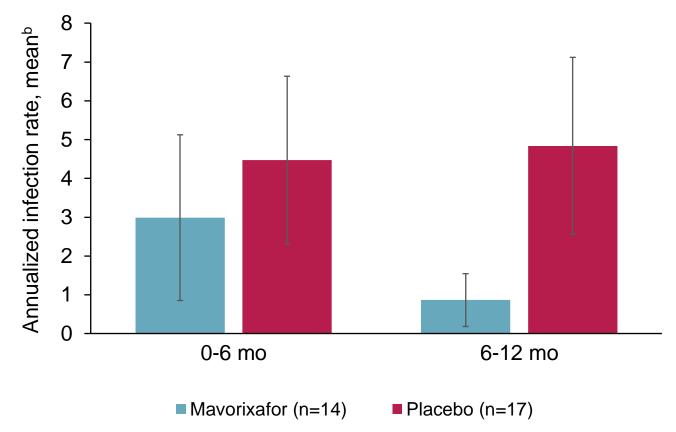

<sup>a</sup>The ITT population comprised all participants randomized to treatment who received ≥1 dose of trial treatment. All data are included in ITT analysis. <sup>b</sup>Error bars represent 95% confidence interval. <sup>c</sup>P values compare mavorixafor group to placebo group at weeks 13, 26, 39, and 52. <sup>d</sup>At week 52, 3 of 17 placebo participants were given mavorixafor in advance of their TAT measurements as they entered the open-label portion of the trial; 1 mavorixafor patient did not receive mavorixafor.



### Trial Met Its First Key Secondary End Point Mean TAT<sub>ALC</sub> Over 52 Weeks in Intent-to-Treat Population<sup>a</sup>



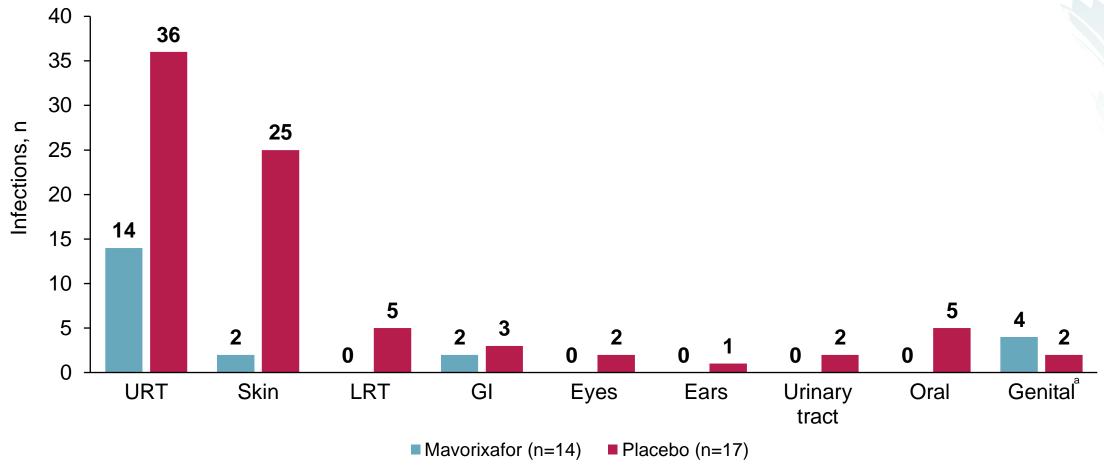
Overall, mean TAT<sub>ALC</sub> was 15.80 hours for mavorixafor vs 4.55 hours for placebo (*P*<.0001)






#### Reduction in Annualized Infection Rate

#### Mavorixafor vs Placebo (ITT Population)


- 60% reduction in annualized infection rate (P<.01)<sup>a</sup>
- >80% reduction in infection rate with mavorixafor vs placebo during 6-12 months (P<.005)<sup>a</sup>





### **Types of Infections**

Lower Frequency of Skin, Oral, and Upper and Lower Respiratory Tract Infections Were Observed in the Mavorixafor Group

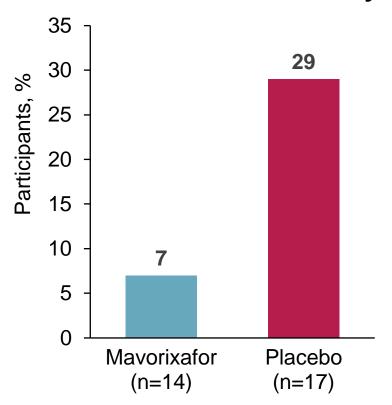




#### **Duration of Infection**

#### Total Time With Infection Was >70% Lower With Mayorixafor vs Placebo

- Mean total time with infection: ≈2 weeks on mavorixafor vs ≈7 weeks on placebo
- Median total time with infection showed ≈75% reduction with mavorixafor


| Total time with infection, d | Mavorixafor<br>(n=14) | Placebo<br>(n=17) |
|------------------------------|-----------------------|-------------------|
| Mean                         | 14.1 (2 wk)           | 49.1 (7 wk)       |
| Median                       | 8.5                   | 32.0              |
| Min, Max                     | 0, 43                 | 8, 134            |



#### **Severity of Infections**

#### Less Severe Infections With Mavorixafor Compared With Placebo Over 52 Weeks

#### **Participants Experiencing** ≥ Grade 3 Infection Severity<sup>a</sup>



| CTCAE Criteria, n | Mavorixafor (n=14) | Placebo<br>(n=17) |
|-------------------|--------------------|-------------------|
| Grade 1 / Grade 2 | 10                 | 11                |
| Grade 3           | 1 <sup>b</sup>     | 4                 |
| Grade 4           | 0                  | 1                 |
| Grade 5           | 0                  | 0                 |



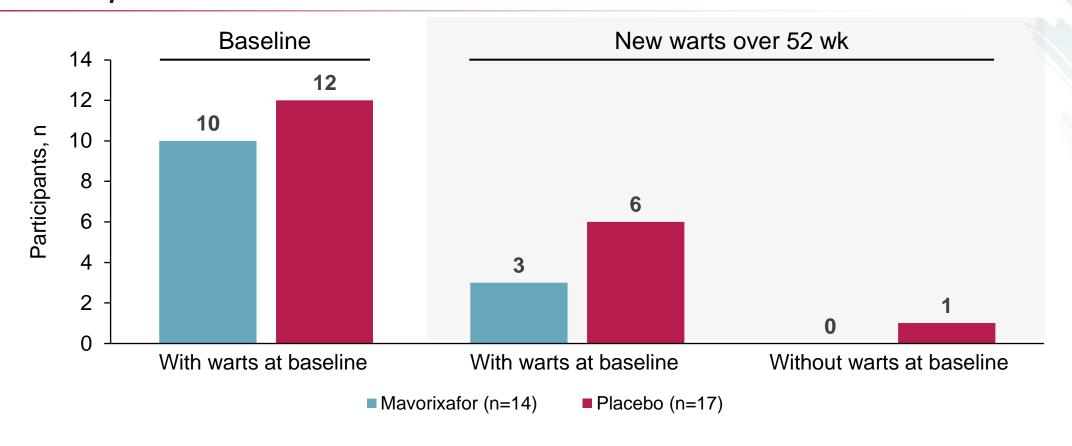
<sup>&</sup>lt;sup>a</sup>Severe infections are those grade 3 or higher by CTCAE criteria.



<sup>&</sup>lt;sup>b</sup>Grade 3 infection on mavorixafor treatment occurred during first 3 months of treatment; rate of severe infections on placebo unchanged over 52-week period.

### Participants on Placebo More Often Required **Treatment With Antibacterials**

Consistent With Higher Rate and Severity of Infections


- 10/17 (59%) on placebo were administered antibacterials/penicillins vs 3/14 (21%) on mavorixafor
  - Amoxicillin or amoxicillin with another antibiotic were most prescribed antibacterial treatment

| Antibacterial Medications Used in Study        | Mavorixafor | Placebo | Total   |
|------------------------------------------------|-------------|---------|---------|
|                                                | (n=14)      | (n=17)  | (N=31)  |
| Beta-lactam antibacterials, penicillins, n (%) | 3 (21)      | 10 (59) | 13 (42) |



#### **Evaluation of Warts**

## No New Warts Were Observed in Mavorixafor Group for Participants Without Warts at Baseline



Minor reduction in wart score in both mavorixafor and placebo groups<sup>a</sup>



### **Safety Assessment**

|                                                 | Mavorixaf<br>(n=14)                         | or     | Placebo<br>(n=17) |        | Total<br>(N=31) |        |
|-------------------------------------------------|---------------------------------------------|--------|-------------------|--------|-----------------|--------|
| System Organ Class                              | Subjects, n (%)                             | Events | Subjects, n (%)   | Events | Subjects, n (%) | Events |
| Any TEAE                                        | 14 (100)                                    | 88     | 17 (100)          | 143    | 31 (100)        | 231    |
| TEAEs occurring in ≥20% o                       | TEAEs occurring in ≥20% of the total cohort |        |                   |        |                 |        |
| Infections and infestations                     | 11 (79)                                     | 28     | 17 (100)          | 96     | 28 (90)         | 124    |
| Skin and subcutaneous tissue disorders          | 8 (57)                                      | 11     | 3 (18)            | 6      | 11 (36)         | 17     |
| Nervous system disorders                        | 4 (29)                                      | 7      | 5 (29)            | 7      | 9 (29)          | 14     |
| Respiratory, thoracic and mediastinal disorders | 2 (14)                                      | 3      | 6 (35)            | 9      | 8 (26)          | 12     |
| GI disorders                                    | 5 (36)                                      | 6      | 2 (12)            | 2      | 7 (23)          | 8      |

- No deaths were reported
- No TESAEs were deemed drug related: TESAEs included infections, glioma, thrombocytopenia
- No discontinuations due to safety events
- Placebo arm had increased infections/infestations and respiratory disorders
- Mavorixafor arm had increased skin and GI disorders: no discontinuations



## **Summary**

- The trial met its primary and first key secondary end points
  - Mean TAT<sub>ANC</sub> for mavorixafor vs placebo was 15.04 vs 2.75 hours (P<.0001), respectively</li>
  - Mean TAT<sub>ALC</sub> for mavorixafor vs placebo was 15.80 vs 4.55 hours (P<.0001), respectively</li>
- Compared with the placebo group, mavorixafor group showed:
  - Increases in WBC, ANC, ALC, and AMC
  - 60% reduced annualized infection rate
  - 71% less time with infection
  - Lower rate of antibiotic usage
  - Less severe and fewer number of infections
- No drug-related TESAEs or safety-related discontinuations were observed with mavorixafor
- Overall, these data support the filing of a new drug application



### **Acknowledgements**

- The authors would like to thank the trial participants and their families and caregivers, investigators, and investigational site staff
- The authors also acknowledge Diego Cadavid, MD, and Sarah Cohen, MD, formerly
  of X4 Pharmaceuticals, Inc, Paula Ragan, PhD, Lori Neri, Eloisa Chappa, Joanna Haas,
  Ken Gorelick, Candida Fratazzi, Hal Hoffman, MD, Anjali Shartharukumar, MD, Atil Bisgin,
  MD, Istvan Varkonyi, MD, Felipe Suarez, MD, Peter Olbrich, MD, PhD, Elisa Cordero, MD,
  PhD, the LLX Solutions Team, Syneos Health, and Valerie Tjon-a-Koy
- Members of the data monitoring committee included Eric Gershwin, MD, John Levine, MD, and Charles Davis, PhD. Members of the independent adjudication committee included Craig Platt, MD, PhD, Kathryn Edwards, MD, and Ester de Vries, MD
- Editorial and writing assistance was provided by PRECISIONscientia in Yardley, Pennsylvania, with financial support from X4 Pharmaceuticals, Inc., and in compliance with international Good Publication Practice guidelines

# Thank you!



#### References

- 1. Heusinkveld LE, et al. *J Clin Immunol.* 2019;39(6):532-556.
- WHIM syndrome. National Organization for Rare Disorders. 2020. Accessed May 1, 2023. https://rarediseases.org/rare-diseases/whim-syndrome/
- 3. Heusinkveld LE, et al. Expert Opin Orphan Drugs. 2017;5(10):813-825.
- 4. Bachelerie F. *Dis Markers*. 2010;29(3-4):189-198.
- 5. Geier CB, et al. *J Clin Immunol*. 2022;42(8):1748-1765.
- 6. Al Ustwani O, et al. *Br J Haematol*. 2014;164(1):15-23.
- 7. Dale DC, et al. *Blood*. 2020;24;136(26):2994-3003.



## Backup slides



## **Genetic Variants in the Trial Population**

| Genetic variant, n (%)        | Mavorixafor | Placebo   |
|-------------------------------|-------------|-----------|
|                               | (n=14)      | (n=17)    |
| c.1000C>T p.Arg334*           | 10 (71.4)   | 12 (70.6) |
| c.1013C>G p.Ser338*3          | 1 (7.1)     | 2 (11.8)  |
| c.950_953del p.Leu317Profs*3  | 1 (7.1)     | 1 (5.9)   |
| c.959_960del p.Val320Glufs*23 | 1 (7.1)     | 1 (5.9)   |
| c.976dup p.Leu326Profs*18     | 1 (7.1)     | 0         |
| c.077_977del p.Leu326Glnfs*17 | 0           | 1 (5.9)   |

## **Summary of AEs**

|                                                                  | Mavorixafor | Placebo  |
|------------------------------------------------------------------|-------------|----------|
|                                                                  | (n=14)      | (n=17)   |
| Any TEAE, n (%)                                                  | 14 (100.0)  | 17 (100) |
| Treatment-related TEAEs, no. (%)                                 | 7 (50.0)    | 3 (17.6) |
| Any TESAE <sup>a,b</sup> , n. (%)                                | 5 (35.7)    | 2 (11.8) |
| COVID-19                                                         | 1 (7.1)     | 0        |
| Campylobacter gastroenteritis                                    | 1 (7.1)     | 0        |
| Cellulitis                                                       | 0           | 1 (5.9)  |
| Endocarditis                                                     | 1 (7.1)     | 0        |
| Sepsis                                                           | 1 (7.1)     | 0        |
| Thrombocytopenia                                                 | 2 (14.3)    | 0        |
| Febrile neutropenia                                              | 1 (7.1)     | 0        |
| Lipase increased                                                 | 1 (7.1)     | 0        |
| Platelet count decreased                                         | 1 (7.1)     | 0        |
| Malignant glioma                                                 | 1 (7.1)     | 0        |
| Pneumonitis                                                      | 0           | 1 (5.9)  |
| Treatment-related TESAE, n (%)                                   | 0           | 0        |
| TEAE or treatment-related TEAE leading to discontinuation, n (%) | 0           | 0        |
| TEAE or treatment-related TEAE leading to death, n (%)           | 0           | 0        |
| Treatment-limiting toxicity, n (%)                               | 0           | 0        |

COVID-19, coronavirus disease 2019.

|                                   | Mavo     | Mavorixafor |           | Placebo  |  |  |
|-----------------------------------|----------|-------------|-----------|----------|--|--|
|                                   | (n       | (n=14)      |           | 17)      |  |  |
| TEAEs reported in ≥2              | Any      | Grade ≥3    | Any grade | Grade ≥3 |  |  |
| participants in either            | grade    |             |           |          |  |  |
| group <sup>b</sup> , n (%)        |          |             |           |          |  |  |
| COVID-19                          | 4 (28.6) | _           | 5 (29.4)  | I        |  |  |
| Upper respiratory tract infection | 3 (21.4) | 1 (7.1)     | 6 (35.3)  | 0        |  |  |
| Thrombocytopenia                  | 3 (21.4) | 0           | 0         | 1 (7.1)  |  |  |
| Dizziness                         | 2 (14.3) | _           | 1 (5.9)   | -        |  |  |
| Epistaxis                         | 2 (14.3) | _           | 1 (5.9)   | -        |  |  |
| Pityriasis                        | 2 (14.3) | _           | 0         | ı        |  |  |
| Rhinitis                          | 2 (14.3) | _           | 0         | I        |  |  |
| Rash                              | 2 (14.3) | _           | 0         | I        |  |  |
| Vomiting                          | 2 (14.3) | _           | 0         | _        |  |  |
| Bronchitis                        | 1 (7.1)  | _           | 4 (23.5)  | _        |  |  |
| Cellulitis                        | 1 (7.1)  | 0           | 3 (17.6)  | 2 (11.8) |  |  |
| Headache                          | 1 (7.1)  | _           | 2 (11.8)  | _        |  |  |
| Nasopharyngitis                   | 1 (7.1)  | 0           | 7 (41.2)  | 1 (5.9)  |  |  |
| Urinary tract infection           | 1 (7.1)  | _           | 2 (11.8)  | _        |  |  |
| Conjunctivitis                    | 0        | _           | 3 (17.6)  | _        |  |  |
| Ear infection                     | 0        | 0           | 2 (11.8)  | 1 (5.9)  |  |  |
| Ear pain                          | 0        | _           | 2 (11.8)  | _        |  |  |
| Lower respiratory tract           | 0        | 0           | 3 (17.6)  | 1 (5.9)  |  |  |
| infection                         |          |             |           |          |  |  |
| Sinusitis                         | 0        | 0           | 2 (11.8)  | 1 (5.9)  |  |  |
| Skin infection                    | 0        | 0           | 2 (11.8)  | 1 (5.9)  |  |  |
| Skin laceration                   | 0        | _           | 2 (11.8)  | _        |  |  |
| Tinea versicolor                  | 0        | _           | 2 (11.8)  | _        |  |  |

|                         | Mavor     | ixafor   | Placebo   |          |  |
|-------------------------|-----------|----------|-----------|----------|--|
|                         | (n=       | 14)      | (n=17)    |          |  |
| Treatment-related       | Any grade | Grade ≥3 | Any grade | Grade ≥3 |  |
| TEAEsa, n (%)           |           |          |           |          |  |
| Acute kidney injury     | 1 (7.1)   | 1        | 0         | 1        |  |
| Dermatitis psoriasiform | 1 (7.1)   | -        | 0         | _        |  |
| Dizziness               | 1 (7.1)   | ı        | 0         | 1        |  |
| Dry eye                 | 1 (7.1)   | ı        | 0         | -        |  |
| Dry skin                | 1 (7.1)   | _        | 0         | _        |  |
| Dysgeusia               | 1 (7.1)   | _        | 0         | _        |  |
| Dyspepsia               | 1 (7.1)   | _        | 0         | _        |  |
| Nausea                  | 1 (7.1)   | _        | 0         | _        |  |
| Product after taste     | 1 (7.1)   | _        | 0         | _        |  |
| Pruritus                | 1 (7.1)   | _        | 0         | _        |  |
| Rash                    | 1 (7.1)   | _        | 0         | _        |  |
| Syncope                 | 1 (7.1)   | 1 (7.1)  | 0         | 0        |  |
| Vomiting                | 1 (7.1)   | _        | 0         | _        |  |
| Cellulitis              | 0         | 1        | 1 (5.9)   | _        |  |
| Conjunctivitis          | 0         | -        | 1 (5.9)   | _        |  |
| Headache                | 0         | I        | 1 (5.9)   | ı        |  |
| Localized infection     | 0         | ı        | 1 (5.9)   | ı        |  |
| Lower respiratory tract | _         |          |           |          |  |
| infection               | 0         | _        | 1 (5.9)   | _        |  |
| Skin infection          | 0         | ı        | 1 (5.9)   | ı        |  |
| Subcutaneous abscess    | 0         |          | 1 (5.9)   | _        |  |
| Tonsillitis             | 0         | _        | 1 (5.9)   | _        |  |
| Upper respiratory tract | 0         |          | 1 (F O)   |          |  |
| infection               | U         |          | 1 (5.9)   | _        |  |

<sup>&</sup>lt;sup>a</sup>Participants may have experienced ≥2 different categories of AEs.

<sup>&</sup>lt;sup>b</sup>Preferred term.

## **WHIM Syndrome Biomarker Summary**

- Considerable increases in WBC, ANC, ALC, and AMC levels were observed in the mavorixafor group compared with placebo group
- When compared to baseline:
  - ALC and AMC levels increased into the normal range in the mavorixafor group
  - WBC and ANC levels approached the normal range in the mavorixafor group

