Results of a Phase 3 Trial of an Oral CXCR4 Antagonist, Mavorixafor, for the Treatment of Participants With WHIM Syndrome: Investigational Assessment of Lymphocyte Subpopulations in Peripheral Blood

Raffaele Badolato,¹ <u>Teresa K. Tarrant,²</u> 4WHIM Study Group, Yanping Hu,³ Lars Karlsson,⁴ Halenya Monticelli,⁴ Chi Nguyen,⁴ Arthur G. Taveras,³ Sandra Zehentmeier,⁴ Katarina Zmajkovicova,⁴ Jean Donadieu⁵

¹Department of Clinical and Experimental Sciences, University of Brescia & ASST Spedali Civili, Brescia, Italy ²Duke University, Durham, North Carolina, USA ³X4 Pharmaceuticals, Inc, Boston, Massachusetts, USA ⁴X4 Pharmaceuticals (Austria) GmbH, Vienna, Austria ⁵CHU Paris Est - Hôpital d'Enfants Armand-Trousseau, Paris, France

4WHIM Study Group

Author	Affiliation			
Laia Alsina, MD, PhD	Hospital Sant Joan de Déu, Barcelona, Spain; Universitat de Barcelona, Spain; Institut de Recerca Sant Joan de Déu, Barcelona, Spain			
Antoine Azar, MD	Johns Hopkins University, Baltimore, Maryland, USA			
Yves Bertrand, MD, PhD	IHOPe, Hospices Civils de Lyon and Claude Bernard University, Lyon, France			
David Dale, MD	University of Washington Medical Center, Seattle, Washington, USA			
Angela Deyà-Martínez, MD, PhD	Hospital Sant Joan de Déu, Barcelona, Spain; Universitat de Barcelona, Spain Institut de Recerca Sant Joan de Déu, Barcelona, Spain			
Kathryn E. Dickerson, MD	The University of Texas Southwestern Medical Center, Dallas, Texas, USA			
Navid Ezra, MD	California Dermatology Institute, Thousand Oaks, California, USA			
Henrik Hasle, MD, PhD	Aarhus University Hospital, Aarhus, Denmark			
Hyoung Jin Kang, MD, MS, PhD	Seoul National University College of Medicine, Seoul National University Cancer Research Institute, Seoul National University Children's Hospital, Seoul, South Korea			
Sorena Kiani-Alikhan, MBPhD	Royal Free London NHS Foundation Trust, London, United Kingdom			
Taco W. Kuijpers, MD, PhD	Emma Children's Hospital, Amsterdam University Medical Centers (Amsterdam UMC), Amsterdam, Netherlands			
Alexander Kulagin, MD	RM Gorbacheva Research Institute, Pavlov University, St. Petersburg, Russia			
Daman Langguth, BHB, MBChB	Sullivan Nicolaides Pathology Auchenflower, Wesley Medical Center, Queensland, Australia			
Carina Levin, MD, PhD	Emek Medical Center, Afula, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israe			
Olaf Neth, MD, PhD	Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, IBiS/Universidad de Sevilla/CSIC, Red de Investigación Translacional en Infectología Pediátrica RITIP, Av Manuel Siurot S/N, Seville, Spain			

Author	Affiliation			
Peter Olbrich, MD, PhD	Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, IBIS/Universidad de Sevilla/CSIC, Red de Investigación Translacional en Infectología Pediátrica RITIP, Av Manuel Siurot S/N, Seville, Spain; Facultad de Medicina, Universidad de Sevilla, Seville, Spain			
Jane Peake, MBBS	Queensland Children's Hospital, South Brisbane, Queensland, Australia			
Yulia Rodina, MD, PhD	Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia			
Caroline E. Rutten, MD, PhD	Amsterdam University Medical Centers (Amsterdam UMC), Amsterdam, Netherlands			
Anna Shcherbina, MD, PhD	Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia			
Matthias G. Vossen, MD, PhD	Medical University of Vienna, Vienna, Austria			
Christian A. Wysocki, MD, PhD	UT Southwestern Medical Center, Dallas, Texas, USA			
Christophe Arbet-Engels, MD, PhD	X4 Pharmaceuticals, Boston, Massachusetts, USA			
Gary J. Bridger, PhD	X4 Pharmaceuticals, Boston, Massachusetts, USA			
Susan Dubuc, RN, MSN	X4 Pharmaceuticals, Boston, Massachusetts, USA			
Honghua Jiang, PhD	X4 Pharmaceuticals, Boston, Massachusetts, USA			
Sunny Li, MS	X4 Pharmaceuticals, Boston, Massachusetts, USA			
Tina Yan, MS	X4 Pharmaceuticals, Boston, Massachusetts, USA			

Presenting Author

Disclosures

Teresa K. Tarrant, MD is a principal investigator in the Phase 3 trial of mavorixafor for WHIM syndrome and consultant to X4 Pharmaceuticals

Dr Tarrant has also consulted for the US Department of Justice, has served as an independent grant reviewer for Pfizer, and has received research funding from AbbVie and Viela Bio

Associate Professor of Medicine Vice Chief of Translational Research, Rheumatology Co-Director, Duke Clinical Immunology Laboratory Rheumatology, Allergy & Immunology Specialist Duke University, Durham, North Carolina

WHIM Syndrome at a Glance

Warts, Hypogammaglobulinemia, Infections, Myelokathexis (WHIM) Syndrome, is a rare combined primary immunodeficiency and chronic neutropenic disorder resulting from impaired leukocyte mobilization from bone marrow to peripheral blood. It is characterized by chronic neutropenia, lymphopenia, recurrent and/or severe infections with variable hypogammaglobulinemia and warts, and is predominantly caused by gainof-function variants in CXCR41-3

with all 4 manifestations in the WHIM acronym³

True global prevalence is unknown^{1,2}

CXCR4, C-X-C chemokine receptor type 4; fs, frameshift; IgA, immunoglobulin A; IgG, immunoglobulin G; IgM, immunoglobulin M; WHIM, Warts, Hypogammaglobulinemia, Infections, and Myelokathexis. ^aThe bar graph reflects the lower percentage range of the prevalence of the manifestation.^bIncludes patients with confirmed myelokathexis and patients without myelokathexis but who had neutropenia. 1. Heusinkveld LE, et al. J Clin Immunol. 2019;39(6):532-556. 2. WHIM syndrome. NORD Rare Disease Database. Accessed December 5, 2023. https://rarediseases.org/rare-diseases/whim-syndrome/. 3. Geier CB, et al. J Clin Immunol. 2022;42(8):1748-1765. 4. Beaussant Cohen S, et al. Orphanet J Rare Dis. 2012;7:71. 5. Dotta I, et al. J Allergy Clin Immunol Pract. 2019;7(5):1568-1577. 6. Tassone L, et al. J Allergy Clin Immunol. 2009;123(5):1170-3, 1173.e1-3. 7. Zmajkovicova K, et al. Poster presented at: International Primary Immunodeficiencies Congress (IPIC) 2023; November 8-10, 2023; Rotterdam, The Netherlands. 8. National Library of Medicine, National Center for Biotechnology Research. Search of CXCR4[gene] WHIM. ClinVar. Accessed January 24, 2024. https://www.ncbi.nlm.nih.gov/clinvar/?term=CXCR4%5Bgene%5D&redir=gene 9. Zmajkovicova K, et al. Genes Immun. 2022;23(6):196-204.

CXCR4 Antagonism as a Potential Strategy for Treatment of WHIM Syndrome

- CXCR4 is highly expressed on most leukocytes, including all B and most T lymphocytes and their subsets¹⁻⁴
- CXCR4-CXCL12 signaling regulates the balance between retention of immune cells in the bone marrow and egress to peripheral blood^{5,6}
- In WHIM syndrome, hyperactive CXCR4 signaling due to impaired desensitization leads to increased retention of leukocytes in bone marrow^{4,6-8}

Mavorixafor is an investigational, orally active, selective small molecule inhibitor of CXCR4 being evaluated for the treatment of WHIM syndrome^{9,10}

CXCR4, C-X-C chemokine receptor type 4; CXCL12, C-X-C chemokine ligand 12; WHIM, Warts, Hypogammaglobulinemia, Infections, and Myelokathexis; WT, wild-type. **1.** García-Cuesta EM, et al. *Front Endocrinol (Lausanne)*. 2019;10:585. **2.** Nie Y, et al. *J Exp Med*. 2004;200(9):1145-56. **3.** Contento RL, et al. *Proc Natl Acad Sci U S A*. 2008;105(29):10101-6. **4.** Heusinkveld LE, et al. *J Clin Immunol*. 2019;39(6):532-556. **5.** Bachelerie F. *Dis Markers*. 2010;29(3-4):189-198. **6.** Badolato R, et al. *Blood*. 2017;130(23):2491-2498. **7.** McDermott DH, Murphy PM. *Immunol Rev*. 2019;287(1):91-102. **8.** Al Ustwani O, et al. *Br J Haematol*. 2014;164(1):15-23. **9.** ClinicalTrials.gov identifier: NCT03995108. Updated October 6, 2023. Accessed February 2, 2024. https://clinicaltrials.gov/study/NCT03995108.

Evaluation of Mavorixafor as a Treatment for WHIM Syndrome

Phase 2 trial (NCT03005327; PMID: 32870250)	Increases in peripheral neutrophils, lymphocytes, monocytes, and WBCs were observed ^{1,2}
Phase 3 trial (4WHIM; NCT03995108)	 Randomized, placebo-controlled, double-blind trial evaluated efficacy and safety of once-daily mavorixafor in participants with WHIM syndrome vs placebo^{3,4} The trial met its primary end point, mean TAT_{ANC}, and first key secondary end point, mean TAT_{ALC}^{a,b}

OBJECTIVE

To report the results of an investigational assessment evaluating changes in lymphocyte subpopulations in participants with WHIM syndrome treated with once-daily mavorixafor vs placebo during the 52-week RCP of the Phase 3 trial

1. ClinicalTrials.gov/study/NCT03005327. Updated September 9, 2023. Accessed January 4, 2024. https://clinicaltrials.gov/study/NCT03005327. 2. Dale DC, et al. Blood. 2020 Dec;136(26):2994-3003. 3. ClinicalTrials.gov/identifier: NCT03995108. Updated October 6, 2023. Accessed February 2, 2024. https://clinicaltrials.gov/study/NCT03995108. 4. Badolato R, Donadieu J. Presented at Clinical Immunology Society (CIS) Annual Meeting 2023; May 18-21, 2023; St. Louis, MO.

ALC, absolute lymphocyte count; ANC, absolute neutrophil count; CXCL12, C-X-C chemokine ligand 12; CXCR4, C-X-C chemokine receptor type 4; NK, natural killer; QD, once daily; RCP, randomized controlled period; TAT, time above threshold; WBC, white blood cell; WHIM, Warts, Hypogammaglobulinemia, Infections, and Myelokathexis.

^aTAT_{ANC} is defined as time (in hours) above threshold ANC ≥500 cells/µL over a 24-hour period, assessed every 3 months for 52 weeks.⁴ ^bTAT_{ALC} is defined as time (in hours) above threshold ALC ≥1000 cells/µL over a 24-hour period, assessed every 3 months for 52 weeks.⁴

Key Baseline Laboratory Characteristics

	Mavorixafor (n=14)		Placebo (n=17)		Normal range (10 ⁶ /µL) ^{1,2}
	Value	n	Value	n	
Blood cell counts, mean (95% CI), 10 ⁶ /L ^a					
Lymphocytes	485.8 (268.0-703.5)	9	519.9 (300.4-739.4)	15	959-3644
B cells ^b	17.8 (1.7-33.9)	9	40.4 (2.1-78.8)	14	106.0-364.6
T cells ^b					
CD4 ⁺ T cells	243.0 (79.9-406.1)	9	254.6 (131.4-377.9)	14	454.5-1249.0
CD8 ⁺ T cells	102.6 (51.5-153.6)	9	109.4 (29.8-189.0)	13	218.1-690.7
NK cells ^b	86.9 (44.6-129.2)	9	101.5 (60.8-142.2)	14	98.1-441.2

Most participants were lymphopenic at baseline, and the sex and age in treatment groups were well balanced

CD, cluster of differentiation; NK, natural killer; WHIM, Warts, Hypogammaglobulinemia, Infections, and Myelokathexis.

^aLymphopenia was observed in 8 of 9 participants receiving mavorixafor and 13 of 15 participants receiving placebo. ^bOne participant in the placebo arm received 1 dose of rituximab for Evan Syndrome during the trial and was excluded from the analysis.

1. Apoil PA, et al. Data Brief. 2017;12:400-404. 2. Oras A, et al. Clin Exp Immunol. 2020;202(3):363-378.

Patients Treated With Mavorixafor Showed Increases in Mean ALC From Baseline Over 52 Weeks^a (ITT Population^b)

ALC, absolute lymphocyte count; ITT, intent to treat; LS, least squares.

^aNominal *P* as no multiplicity adjustment was performed. ^bThe ITT population comprised all participants randomized to treatment, including 1 participant in the placebo arm who received 1 dose of rituximab for Evan syndrome during the trial. ^cOne participant in mavorixafor group did not receive mavorixafor dose at Week 52. ^dThree placebo participants were given mavorixafor at the Week 52 visit.

1. Badolato R, Donadieu J. Presented at Clinical Immunology Society (CIS) Annual Meeting 2023; May 18-21, 2023; St. Louis, MO. 2. ClinicalTrials.gov identifier: NCT03995108. Updated October 6, 2023. Accessed February 2, 2024. https://clinicaltrials.gov/study/NCT03995108

Mean Total B Cell and Subpopulation Counts Increased and Were Sustained 4 Hours After Dose With Mavorixafor vs Placebo

Select B Cell Subpopulations^{a,b}

Naïve CD45+CD19+IgD+CD27-

ANOVA, analysis of variance; CD, cluster of differentiation; LLN, lower limit of normal; ULN, upper limit of normal.

^aOne participant in the placebo arm received 1 dose of rituximab for Evan Syndrome during the trial and was excluded from the analysis. ^bData represent mean and 95% CI. ^cSignificance of differences between 2 groups was determined by 2-way ANOVA test. ^dNominal *P* as no multiplicity adjustment was performed. ^eDashed lines represent normal reference range from healthy donors.¹ ^fOne participant in mavorixafor group did not receive mavorixafor dose at Week 52. ^gThree placebo participants were given mavorixafor at the Week 52 visit.

Mean Total CD4⁺ T Cell and Subpopulation Counts Increased and Were Sustained 4 Hours After Dose With Mavorixafor vs Placebo

Select CD4⁺ T Cell Subpopulations^{a,b}

ANOVA, analysis of variance; CD, cluster of differentiation; LLN, lower limit of normal; ULN, upper limit of normal.

^aOne participant in the placebo arm received 1 dose of rituximab for Evan Syndrome during the trial and was excluded from the analysis. ^bData represent mean and 95% CI. ^cSignificance of differences between 2 groups was determined by 2-way ANOVA test. ^dNominal *P* as no multiplicity adjustment was performed. ^eDashed lines represent normal reference range from healthy donors.¹ ^fOne participant in mavorixafor group did not receive mavorixafor dose at Week 52. ^gThree placebo participants were given mavorixafor at the Week 52 visit.

Mean Total CD8⁺ T Cell and Subpopulation Counts Increased and Were Sustained 4 Hours After Dose With Mavorixafor vs Placebo

Select CD8⁺ T Cell Subpopulations^{a,b}

Naïve CD3+CD8+CD4-CD45RA+CCR7+

ANOVA, analysis of variance; CD, cluster of differentiation; LLN, lower limit of normal; ULN, upper limit of normal.

^aOne participant in the placebo arm received 1 dose of rituximab for Evan Syndrome during the trial and was excluded from the analysis. ^bData represent mean and 95% CI. ^cSignificance of differences between 2 groups was determined by 2-way ANOVA test. ^dNominal *P* as no multiplicity adjustment was performed. ^eDashed lines represent normal reference range from healthy donors.¹ ^fOne participant in mavorixafor group did not receive mavorixafor dose at Week 52. ^gThree placebo participants were given mavorixafor at the Week 52 visit.

Mean Total NK Cell Counts Were Unchanged With Mavorixafor and Similar to Placebo

ANOVA, analysis of variance; CD, cluster of differentiation; LLN, lower limit of normal; NK, natural killer; ns; not significant; ULN, upper limit of normal.

^aOne participant in the placebo arm received 1 dose of rituximab for Evan Syndrome during the trial and was excluded from the analysis. ^bData represent mean and 95% CI. ^cSignificance of differences between 2 groups was determined by 2-way ANOVA test. ^dDashed lines represent normal reference range from healthy donors.¹ ^eOne participant in mavorixafor group did not receive mavorixafor dose at Week 52. ^fThree placebo participants were given mavorixafor at the Week 52 visit.

Mavorixafor Normalizes Absolute B- and T-Cell Counts Without Prolonging Elevation at Trough

CD, cluster of differentiation; LLN, lower limit of normal; NK, natural killer; ULN, upper limit of normal.

^aOne participant in the placebo arm received 1 dose of rituximab for Evan Syndrome during the trial and was excluded from the analysis. ^bData represent mean and 95% CI. ^cDashed lines represent normal reference range from healthy donors.¹

Conclusions

 Statistically significant increases in peripheral blood lymphocyte counts were observed in mavorixafor-treated participants compared with placebo:

- B cell, CD4⁺ T cell, and CD8⁺ T cell counts increased to or above the normal reference range and was sustained at all timepoints assessed 4 hours after dose in the mavorixafor-treated group
- Higher levels of B and T lymphocytes and previously observed improved ANC potentially contributed to decreased infection rate, severity, and duration reported during RCP in mavorixafor-treated participants with WHIM syndrome

Acknowledgements

- The authors would like to thank the trial participants and their families and caregivers, investigators, and investigational site staff
- The authors also acknowledge Andrea Belschner, CCRP; Atil Bisgin, MD; Diego Cadavid, MD; Eloisa Chapa, MPH; Kelly Chen, PhD; Sarah Cohen, MD; Elisa Cordero, MD, PhD; Candida Fratazzi, MD; Ken Gorelick, MD; Joanna Haas, MD; Hal Hoffman, MD; Rick MacLeod; Lori Neri, MSN; Paula Ragan, PhD; Anjali Sharathkumar, MD; Murray Stewart, MD; Felipe Suarez, MD; Weihua Tang, PhD; Valerie Tjon-a-Koy; Istvan Varkonyi, MD, PhD; the LLX Solutions Team; and Syneos Health
- Members of the data monitoring committee included Charles Davis, PhD; Eric Gershwin, MD; and John Levine, MD. Members of the independent adjudication committee included Esther de Vries, MD, PhD; Kathryn Edwards, MD; and Craig Platt, MD, PhD
- The trial was supported by X4 Pharmaceuticals, Inc.
- Editorial and writing assistance was provided by PRECISIONscientia in Yardley, Pennsylvania, with financial support from X4 Pharmaceuticals, Inc., and in compliance with international Good Publication Practice guidelines