CXCR4 Variant Landscape in WHIM Syndrome: Variant Interpretation Using Clinical and Functional Data

Introduction

- Warts, Hypogammaglobulinemia, Infections, Myelokathexis (WHIM) syndrome is a rare immunodeficiency disease primarily caused by gain-of-function variants in the C-terminus of CXCR4 chemokine receptor 4 (CXCR4)\(^1\)
- Individuals with WHIM syndrome can present with heterogeneous clinical manifestations\(^2\)
- Due to variable clinical presentations, diagnosis of WHIM syndrome can be challenging
- Genetic testing can expedite and support the clinical diagnosis of WHIM syndrome\(^3\)
- CXCR4 variants can be classified as pathogenic (P), likely pathogenic (LP), or variant of uncertain significance (VUS)
- WHIM syndrome is predominantly caused by gain of function, resulting in a frameshift or nonsense variant
- Herein, we aimed to expand knowledge of the genetic landscape in WHIM syndrome by incorporating results from in vitro functional testing with Invitae’s Sherloc variant classification framework, a refined version of the 2015 American College of Medical Genetics and the Association for Molecular Pathology guidelines for interpretation of sequence variants\(^4\)

Aim

To evaluate all known CXCR4 variants and identify potential disease-causing variants using the Sherloc variant classification framework.

Methods

- Literature, databases (Invitae, gnomAD), and a genetic testing program (Invitae/PATHWARD) were used to identify and collect information on CXCR4 variants observed in people with WHIM syndrome
- Variants were classified by Invitae using the Sherloc variant classification framework, which used evidence derived from a combination of clinical and functional data
- CXCR4-chimeric ligand (CXCL12)-induced internalization of CXCR4 receptor in identified in vitro assays using CXCR4 variant-expressing cells, to assess 1 aspect of pathogenicity

Results

- As of July 2023, 36 CXCR4 variants (resulting in 34 distinct protein variants) in people with WHIM syndrome had been identified via publications, ClinVar, and the Invitae/PATHWARD genetic screening initiative (Figure 1)
- Of those, only 22 CXCR4 variants were classified as P or LP by Invitae, leaving potentially disease-causing variants categorized as VUS
- Variants were classified as VUS due to the lack of clinical data, or based on predominately caused by gain of function

In vitro functional testing of 32/34 identified CXCR4 protein variants showed that all 32 exhibited substantially impaired internalization across a range of CXCL12 concentrations.

CXCR4 C-terminus Variants

- The 36 identified CXCR4 variants were reclassified in collaboration with Invitae using the Sherloc variant classification framework (Figure 2, Figure 3, Table 1): Absence in the general population (per gnomAD), segregation with disease, and multiple unrelated cases were factors that confirmed the most pathogenic points for CXCR4 variant classification

A total of 31/36 CXCR4 variants were reclassified using integrated genetic, clinical, and functional data

<table>
<thead>
<tr>
<th>CXCR4 variants</th>
<th>Clinical criteria</th>
<th>Functional testing</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frameshift, nonsense, frameshift, P</td>
<td>No change</td>
<td>Impaired internalization</td>
<td>P</td>
</tr>
<tr>
<td>Frameshift, nonsense, frameshift, LP</td>
<td>No change</td>
<td>Impaired internalization</td>
<td>LP</td>
</tr>
<tr>
<td>Frameshift, nonsense, frameshift, VUS</td>
<td>No change</td>
<td>Impaired internalization</td>
<td>VUS</td>
</tr>
</tbody>
</table>

CXC4 receptor internalization

Conclusions

- As of July 2023, 36 variants in the CXCR4 C-terminus were identified in people with WHIM syndrome in publications, databases (gnomAD, Invitae), and a genetic testing program (Invitae/PATHWARD)

- Using results from in vitro functional testing together with data from published clinical cases of WHIM syndrome, 27 variants were reclassified from VUS to LP and 4 from LP to P, resulting in a total of 36 CXCR4 variants currently being recognized as LP or P

- The current body of evidence allows to make a prediction that any novel truncating variant (nonsense or frameshift) between aa 317 and 346 will likely be a pathogenic variant for WHIM syndrome

- We also showed the value of in vitro testing and detailed variant analysis in resolving the pathogenic potential of variants, especially where clinical information is insufficient to confidently variant interpretation

- These data provide the most complete overview of the CXCR4 variant landscape in WHIM syndrome to date to enhance our understanding of the genetic factors underlying WHIM syndrome

- Further characterization and classification of novel CXCR4 variants are warranted to expand our knowledge of the CXCR4 variant landscape in WHIM syndrome and inform future best practice medicine approaches

Acknowledgements

The authors would like to acknowledge the medical and nursing assistance of PRECISIONbiobank in Honor, Pennsylvania, which supported the genetic screening of individuals with WHIM syndrome in compliance with international best practice guidelines.

References

- AB, M, SP, KN, and MV are former employees of X4 Pharmaceuticals and/or have equity ownership of X4 Pharmaceuticals.
- OD, MA, LM, AO, KN, and MV are current employees and/or have equity ownership of X4 Pharmaceuticals.
- MS is current employee of Invitae

- Katarina Zmajkovicova received funding from the Austrian Research Promotion Agency (FFG), the Austrian Science Fund (FWF), and the University of Graz. Katarina Zmajkovicova is supported financially by X4 Pharmaceuticals in compliance with International Good Publication Practice guidelines.

- This research was supported financially by X4 Pharmaceuticals (Austria) GmbH, Vienna, Austria.

- ClinicalTrials.gov, ID: NCT03594732

- Presented at the 2024 American Society of Pediatric Hematology/Oncology (ASPHO) Conference; April 3-6, 2024; Seattle, Washington

Table 1. CXCR4 variants identified in patients with WHIM syndrome, including the variant’s assigned interpretation and segregation based on the Sherloc variant classification framework.**¹** De novo segregation with WHIM syndrome.**²** Absent or low frequency variants.

<table>
<thead>
<tr>
<th>CXCR4 variants</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frameshift, nonsense, frameshift</td>
<td>P</td>
</tr>
<tr>
<td>Frameshift, nonsense, frameshift</td>
<td>LP</td>
</tr>
<tr>
<td>Frameshift, nonsense, frameshift</td>
<td>VUS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CXCR4 variants</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frameshift, nonsense, frameshift</td>
<td>P</td>
</tr>
<tr>
<td>Frameshift, nonsense, frameshift</td>
<td>LP</td>
</tr>
<tr>
<td>Frameshift, nonsense, frameshift</td>
<td>VUS</td>
</tr>
</tbody>
</table>

*The authors would like to acknowledge the medical and nursing assistance of PRECISIONbiobank in Honor, Pennsylvania, which supported the genetic screening of individuals with WHIM syndrome in compliance with international best practice guidelines.

De novo segregation with WHIM syndrome.

Absent or low frequency variants.

References